Mixed Normal Conditional Heteroskedasticity

نویسندگان

  • Markus Haas
  • Stefan Mittnik
  • Marc S. Paolella
چکیده

Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previously proposed specifications are discussed and stationarity conditions are derived. An empirical application to NASDAQindex data indicates the appropriateness of the model class and illustrates that the approach can generate a plausible disaggregation of the conditional variance process, in which the components’ volatility dynamics have a clearly distinct behavior that is, for example, compatible with the well-known leverage effect. JEL Classification: C22, C51, G10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity with Wavelet Transform

In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase the forecasting performance of the generalized autoregressive cond...

متن کامل

Multivariate mixed normal conditional heteroskedasticity

This paper proposes a new multivariate volatility model where the conditional distribution of a vector time series is given by a mixture of multivariate normal distributions. Each of these distributions is allowed to have a time-varying covariance matrix. The process can be globally covariance-stationary even though some components are not covariance-stationary. Some theoretical properties of t...

متن کامل

Asymptotic Distribution of the Markowitz Portfolio

The asymptotic distribution of the Markowitz portfolio, Σ̂μ̂, is derived, for the general case (assuming fourth moments of returns exist), and for the case of multivariate normal returns. The derivation allows for inference which is robust to heteroskedasticity and autocorrelation of moments up to order four. As a side effect, one can estimate the proportion of error in the Markowitz portfolio du...

متن کامل

Integrated Conditional Moment Testing of Conditional Heteroskedasticity Models∗

In this paper we propose a consistent Integrated Conditional Moment (ICM) test of the functional form of a conditional heteroskedasticity model, for example a GARCH specification, which is asymptotically independent of the ICM test of the specification of the underlying conditional expectation model, under the null hypothesis that both models are correctly specified.

متن کامل

A Nonparametric Goodness-of-fit-based Test for Conditional Heteroskedasticity∗

In this paper we propose a nonparametric test for conditional heteroskedasticity based on a new measure of nonparametric goodness-of-fit (R2). In analogy with the ANOVA tools for classical linear regression models, the nonparametric R2 is obtained for the local polynomial regression of the residuals from a parametric regression on some covariates. It is close to 0 under the null hypothesis of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002